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Abstract 

The sampling-line method is a convenient procedure for 
evaluating the line profile of a polycrystalline sample. 
To deal with size-broadening effects only, thc method is 
applied to Bernoullian and Gaussian samples; the line 
profile is given by a Lorentzian function in the first case 
and by a similar function in the second case. For any 
real polycrystalline sample the intensity decreases as 
S - 2  for large I sl = IS -- S h k l  I . For a given average 
thickness the apparent crystallite size is up to 2 times 
larger than for samples consisting of crystals with the 
same size and shape. 

Introduction 

The influence of crystal size distributions on dif- 
fraction profiles is an important subject at present, in 
that an accurate knowledge of the line shape is required 
for the structural refinement via powder analysis, such 
as the Rietveld method (e.g. Albinati & Willis, 1982). 

Following previous studies on the subject (Allegra, 
Bassi & Meille, 1978; Allegra & Ronca, 197b, 1979), 
in the present paper we will propose a general 
mathematical treatment for simple statistical distri- 
butions. A few examples of line profiles thus obtained 
will be compared with well-known results from single 
crystals (see, in particular, Wilson, 1949), with the 
purpose of providing simple guidelines for the charac- 
terization of the sample statistics. 

We shall confine our attention to those crystal size 
distributions that may be factorized into terms each 
depending on a single crystallite thickness. In other 
words, if the crystals are bound by n sets of planes and 
d~(i = 1 , . . . ,  n) is the distance between two consecutive 
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parallel planes of the ith set for the general crystal, we 

have 

p(d, d2. . .d , , )=p(d,)p(dz) . . .p(d , , ) ,  (1) 

where the p's are normalized probability density 
functions. The theory will be applied to the Bernoullian 
and Gaussian distributions, already considered in 
previous papers. For the former case (Allegra, Bassi & 
Meille, 1978), the present treatment may be viewed as 
an extension of the results to the general model with 
any number of boundary planes. For the Gaussian 
distribution, an error contained in the former approach 
(Allegra & Ronca, 1978) was pointed out later (Allegra 
& Ronca, 1979), but its consequences on the results 
were not amended, so that they are only correct for 
particular classes of reflections; the procedure given in 
this paper leads to the general result. 

The method of the sampling line 

Stokes & Wilson (1944) showed that the size-depen- 
dent line profile is uniquely related with the probability 
distribution of the lengths of the intra-crystalline chords 
parallel to S o = S(hkI) (S = I SI = 2 sin 0/2; a chord is 
defined as any segment having both ends on the crystal 
surface). Indicating by T the general chord length and 
by p(T) its area probability density, we derive the 
general expression of the line profile for any 
polycrystalline specimen from that proposed for iden- 
tical crystals (cf. Wilson, 1949, ch.IV, equation 5) as 

oo sin2(ztTs) 
. f  (s) = ~ / / V  f p(T) dT / (T ) ,  (2) 

o (~s )  2 

where s is the difference S - S o between the general 
value of S and that corresponding to the hkl point in 
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reciprocal space, V is the volume of the unit cell, ~ 4/ is 
the total number of diffracting unit cells and (T )  is the 
average value of T. The above expression is nor- 
malized as follows 

+co 
f J - ( s )ds=~4/ - /V .  (3) 

--CO 

The quantity p(T)  dT  may be defined as the proba- 
bility of finding a chord length between T and T + dT 
when picking a crystal at random and randomly 
sellecting a point on its area projected along S 0. 

The approach followed in the present paper exploits 
the statistical independence between the different 
crystal thicknesses d i, implicit in (1). In particular, 
under such circumstances the polycrystalline sample 
may be generated by cleaving an infinite three-dimen- 
sional crystal through three or more sets of parallel 
planes, with a suitable statistical distribution of inter- 
planar spacings. As an example, in the Bernoullian case 
the spatial distribution of the parallel planes within a 
given set is completely random, so that the probability 
density of their general interplanar distance d is given 
by 

p(d) = L-X exp ( - d / L  ) (4) 

where L is the average value of d. In the Gaussian case 
the corresponding probability is given by 

p(d) = 2(7d_~) -~ exp (-dE/TrL2). (5) 

A Gaussian distribution as above might arise if all 
the crystals nucleated at the same time and their growth 
occurred via reversible steps (Allegra & Ronca, 1978). 
Another possible example could be represented by a 
Gaussian distribution with a non-zero average, i.e. 

p(d)oc exp [ - ( d -  L)2/2o'2], (6) 

which may occur if the crystals display minor 
differences in size among themselves (o 2 and L 
respectively are the variance and the average of the 
distribution, a ,~ L). In the present context we will 
confine our attention to the distributions given by (4) 
and (5). 

Let us consider any straight line s through the infinite 
crystal, parallel to S 0. In view of the lack of correlation 

1St s e t ~ ' ~  i " < ~ 2 n d  set 

D ~. A . ,B.. .C~ s 

Fig. 1. Two-dimensional sketch showing two sets of parallel 
cleavage planes crossed by the sampling line s (see text). 

between different plane sets, there can be no spatial 
regularity among their intersections. Consequently, no 
matter where s is placed, the segments intercepted by 
the planes on s will represent a general statistical 
sample of the intracrystalline chords; for this reason s 
will be designated henceforth as the sampling line (see 
Fig. 1). It is shown in the Appendix that the probability 
distribution of the chord lengths on the sampling line 
[i.e. p(T)] may be obtained from the interplanar 
statistics of the different plane sets. Then the line profile 
is evaluated through (2). 

The general result may be expressed in terms of the 
relative probability Pk that the planes of the kth set 
intersect the sampling line, as well as of the conditional 
probability density [~kl(lki) that after any such inter- 
section a chord length lki is terminated by a plane of the 
ith set. We have (see Wilson & Zsoldos, 1966) 

P k = L -ksa / ~. L-ks ~ , (7) 
k 

where Lks is the average segment length intercepted on 
s by two consecutive planes belonging to the kth set, 
and is related to the average interplanar distance L k by 

Lks = L,/cos (a~' S0) = Lka'  ~ S0/I a~'. S01 . (8) 

In (8), a~ is any (reciprocal) vector othogonal to the 
planes of the kth set. As for/~ki, if k = i we have 

Pkk (Y) = P(Y; Lks), (9) 

where the right-hand side is given by the appropriate 
interplanar probability [i.e. (4)-(6)] in which the 
average value L is replaced by Lks. If k~ i, it is shown 
in the Appendix that 

oo 
/)kt(Y) = L ~1 f p , (z)  dz. (10) 

Y 

The probability density for the chord length T may now 
be obtained as [see (AS)and (A7)] 

p ( T ) =  Z Z PkPkt(T) 1--I /5~(y) , (11) 
k l j~:i 

and the line profile is given by (2). 

The Bernoul l ian case  

It should be anticipated that this case might be treated 
by an extension of the kinetic theory proposed by 
Wilson (1943, 1949) and Wilson & Zsoldos (1966) for 
the crystals containing planar boundaries ('mistakes') 
between different domains. We will show in the 
following how the problem may be tackled through the 
sampling-line approach. 

From (4) and (9), we have 

/3kk(Y ) = L~-s a exp (--Y/Lks), (12) 

and from (10) 
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/~ , t ( y )  = L?s 1 exp (--y/Lis) = p . ( y  ). (13) 

It should be noted that the last equality merely says 
that the probability of finding an intersection point on s 
with a plane of the ith set is always the same no matter 
where we choose the point from which the probability 
is evaluated, in agreement with the random character of 
the Bernoullian distribution. From (11), (12) and (13) 
we get 

p(T)  = L-¢ ~ exp ( -T /L~)  (14) 

where 

L s ' =  Z L-ks ~ (15) 
k 

and from (2) the line profile reduces to 

Z/F" Ls 
J ( s ) -  T 1 + (2rCLsS) 2' (16) 

showing that the Lorentzian shape is a general property 
of the Bernoullian powder samples, no matter how 
many sets of boundary planes there are. 

As an example, the line profile already given for the 
general sample of parallelepiped crystals (Allegra, 
Bassi & Meille, 1978, equations 19 and 19') may be 
easily obtained with the present approach, and L, is 
identified with So/Q(hkl). However, it should be 

a %  \~ 

' :1;'7 I I 

4,1 

, g : /  
• .. ~ i ? ~ .  ....... \ 

\ / ~ ,~  

-4.0 -3.0 -2.0 -1.0 0 1'.0 2-0 3.0 4.0 x 

Fig. 2. Five different line profiles normalized to a unit area and to a 
half-peak half-width also equal to unity: (a) from identical cubic 
crystals, h00 reflection; (b) from identical cubic crystals, hhh 
reflection; (c) from a Gaussian distribution, crystals with cubic 
cell and three equivalent edges, h00 reflection; (d) from a 
Gaussian distribution as in point (c), hhh reflection; (e) from a 
Bernoullian distribution, any reflection [Lorentzian or Cauchy 
function, see (16)]. 

stressed that (16) applies to any number of boundary 
plane sets. 

The Gaussian case 

We will give in the following the full expression ofF(T) 
in the case of the three sets of boundary planes. First of 
all, taking ~bkkO,) from (5), where L -- Lks [see (8)] we 
get 

b,k(Y) = Lk-s 1 erfc (y/V/~Lks), (17) 

where erfc(y) = 1 - err(y) = 1 - 2/X/~ fgexp (-t2) dt. 
From (7)-(11) 

p ( T )  = 2 L~ 1 zc -1 ~ L~ exp - - - -  L ~ s  2 

i=1 ~ = 

- 3 T  L~ 1 erfc 
t=l  

+ (L2~L3s)-l(rE/rcL21~ + 1)exp 

x erfc erfc 
L2~ v/~L3~ 

+ (two more terms obtained via cyclic 

index permutation) ] 

- -  7~ " - 1 T  L-f](L22 + L~ 2) erfc V/-~L1, 

x exp - -  (Li-~ + L3~)-2 

+ (two more terms obtained via cyclic 

index permutation)}). (18) 

The line profile may now be evaluated through the 
application of (2), although the general analytical 
expression would be very complicated. Numerical 
computation is necessary. It should be remarked that if 
the reciprocal vector S0 of the reflection under 
consideration is parallel to one or two of the boundary 
plane sets, the corresponding Lk~'S go to infinity and the 
above expression simplifies [i.e. L-k~ -, 0, exp (--x 2/Lk~) 
--, 0, erfc (X/Lk~) --, 11. In particular, this arises if the 
crystal faces are parallel to the unit-cell vectors. If a 
crystal edge is parallel to S o , there is one non-zero index 
only and the result already given by Allegra & Ronca 
(1978) is correct. [The probabilities of unit-cell ter- 
mination (a,fl, y) adopted by Allegra & Ronca (1978) 
for the Gaussian crystal distribution are easily related 
with the average inter~lanar distances L, see equation 
(5), through L 1 = (V/Zrtza*) -~ etc.] 

Fig. 2 shows the line profiles for the Bernoullian 
[from (16)] and the Gaussian distributions [from (18) 
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and (2)]; for the latter case both the h00 and the hhh 
reflections are taken into consideration (crystals with a 
cubic cell and three statistically equivalent edges). For 
the sake of comparison, the h00 and hhh profiles from 
identical crystals with a cubic shape are also reported 
with the same normalization, the corresponding 
equations being [see Wilson (1949), Ch.IV, equation 
(26), normalization coefficients altered to fit present 
equation (2)] 

,/V'L sin 2 gt 1 
~ r ' h o o ( S ) - - - -  , ~'hhh(S) 

v ~ 

~¢/'L 3V/3 V 2 - -s in  2 gt 2 

V 2 q~2 

(19) 

where L is the crystal edge length and ~'1 = nLs, q/2 = 
V/3nLs. 

D i s e u s s l o n  o f  the results  

insofar as it reduces to a 6 peak for T = L, the length of 
the crystal edge. As an additional comment, it seems 
worth pointing out that the s -2 intensity decrease at 
large I sl would not be altered by a possible convolution 
of the intrinsic line shape with a more quickly vanishing 
function, such as the Gaussian. This may be easily 
shown for the Voigt function, i.e. a convolution of a 
Gaussian with a Lorentzian. Such a function may be 
evaluated as the transform of the product of a Gaussian 
and a simple exponential, i.e. 

+ o o  

J ' ( s ) ~  f exp(-¢2/2.~ 2 -  1¢1/)3 + 2~/sg") de 
--0(3 

OO 

= 2 Re f exp (--~2/2.~2 -- ~37 + 2zffsg") d~ 
0 

- V ~  Re[w(z)], (21) 

where 

w(z~ = exp (--z 2) erfc ( - i z )  

: + 
(22) 

From inspection of Fig. 2 it is apparent that the profiles 
display considerable similarities among themselves with 
the only exception of the h00 reflection from identical 
crystals. In particular, unlike the other curves that 
show a smooth decrease for large I s I, the h00 profile 
contains a characteristic sequence of decreasing ripples 
in the tail region. The reason for this behaviour is 
related to the discontinuous character of the function 
p(T)  in this case. In fact, as may be seen from (2), in 
the limit of large I sl the T values for which the integral 
gives a non-negligible contribution are such that T lsl >> 
1, with the consequence that sin2(nTs) may be replaced 
by its average value 1/2 as long as p(T)  is a reasonably 
continuous function. Consequently, considering that 
J~' p(T) dT = 1 and remembering (3), we have 

+ ~  

1 t ~  

lim J ( s ) -  | J - ( s ) d s  = constant/s 2, 
Ist -oo 2n 2 s2(T) -oo d 

(20) 

which suggests a possible experimental determination 
of (T) .  Unlike the other cases, for an hO0 reflection 
from identical crystals p(T)  is highly discontinuous 

and Re stands for the real part. For I sl ~ c~, it is 
possible to see that ~'-(s) oc g2 [Abramowitz & Stegun 
(1965), cf. asymptotic expansions of w(z) for large Izl, 
p. 328]. 

The asymptotic behaviour expressed by both (20) 
and Fig. 2 suggests a practical criterion to construct 
realistic line shapes for polycrystalline samples. 
Namely, whenever Isl ~ 2sl/2, Sl/2 being the half- 
width at half-peak-height, the s -2 law may be fairly 
safely assumed; as an approximate measure of the 
error involved, if the intensity value at x --- s/sl/2 = 2 is 
made to be 100 for curves (b)-(e) in Fig. 2, the largest 
difference between them for x > 2 would be less than 
six units. The unphysical character of the Gaussian line 
shape, implying virtual disappearance of the intensity 
for x > 2.5, should be stressed once again (Allegra & 
Ronca, 1978). 

Table 1 summarizes the main conclusions of this 
analysis. The table shows few parameters and statistics 
corresponding to the profiles reported in Fig. 2. 
Following Lanford & Wilson (1978), three different 
definitions of the apparent crystal thickness are 
considered, their relationships being expressed in terms 

Table 1. Intensity ratios and apparent crystal thickness for  different samples 

= (T~) = (T2)/(T); e k = (T); e w = 0 . 4 4 3 / s u 2  = 0.8862/[cos 0.A(20)1; T = crystal thickness along So; L = edge of cubic crystals; 

Sample (el. Fig. 2) .f(0)/.7(1.5sv2 ) 

(a) Identical cubic crystal, h00 reflection 5-76 
(b) Identical cubic crystal, hhh reflection 4.10 
(c) Gaussian distribution, cubic crystal, h00 reflection 3.69 
(d) Gaussian distribution, cubic crystal, hhh reflection 3.45 
(e) Bernoullian distribution, any reflection 3.25 

>60 1 1 
7.57 0.667 1.196 
6.39 0.637 1.244 
5.45 0.553 1.320 
5.00 0-500 1.392 

s~, 2 = half-peak half-width in units: S = 2 sin 0/2; A(20) = half-peak full-width in 20 °. 



G. ALLEGRA 867 

of the volume, or weight, average thickness (Tv) = 
( T 2 ) / ( T )  (= ep), which is perhaps the most meaningful 
parameter in many cases. In view of the s -2 depen- 
dence at large I sl common to all but the anomalous 
h00 profile for identical crystals, information on the 
size distribution should best be derivable from analysis 
of the profile within the range s~/2 < s < 2Si/2, 
wherein the peak-to-general intensity ratios are the 
lowest for the Bernoullian case. It may be observed that 
the ratios et,/e~ and ew/e ~ both appear to be well 
correlated with the above intensity ratios, as has been 
checked by us on yet another statistical model not 
reported in Table 1, i.e. cubic crystals with identical 
shapes and a number probability distribution oc 
exp ( -L  x constant). The extreme values of the 
parameters displayed by the Bernoullian statistics are 
produced because it represents the most randomized 
model. In physical reality, complete randomness in the 
placements of the boundary planes should be more or 
less unfavoured to the extent that it leads to a relatively 
large surface energy [compare, for example, the overall 
crystal volume distribution in the Bernoullian with that 
in the Gaussian case, given by Allegra & Ronca 
(1978), showing for the former a much larger percen- 
tage of crystals below the average size]. In conclusion, 
comparison of the actual intensity ratios with the 
figures reported in Table 1 should allow the reader to 
get an approximate index of the departure from full 
randomness (i.e. the Bernoullian distribution) in terms 
of the ratio ew/e ~, whence the volume average thickness 
may be obtained from the half-peak width 2s ~/2 and the 
definition e w = 0.443/sl/2. 

The author acknowledges the constructive and useful 
advice received by Professor A. J. C. Wilson during the 
preparation of this paper. 

A P P E N D I X  

Let us refer to Fig. 1, where a two-dimensional example 
is shown, with two sets of cleavage planes. We shall 
confine our attention at first to the chords having their 
left end on planes belonging to set 1 (see point A). We 
will first obtain the conditional probability/~2(/~2) for 
the segment length ll2 between point A and the next 
intersection C of the sampling line with a plane of set 2 
(lt2 is not a chord, in general). Let us remark that for 
point A to be comprised within the segment DC =/22, 
A C must be shorter than or equal to DC; consequently, 

CO 

b~2(l,z)W, f P22(/22) d122. (a 1) 
112 

Generalizing the above result (1, 2 ~ k, i) with the 
normalizing condition fo /)u(Y) dy = 1, after in- 
tegration by parts we get 

0O 

Pki(Y) = f Pil(Z) dz/Lis, (A2) 
y 

where 
oO 

Ll s=  ( l , ) =  f z bi i(z)dz,  (A3) 
0 

and the actual value of Lis is given by (8). [It should be 
pointed out that/3u(y) is independent of k.] The next 
step will be to define the joint conditional probability 
[:)t,(Ikl, lk2, ..., Ikk . . . .  ) that an intersection with the kth 
plane set (see point A in Fig. 1, k = 1) is followed by an 
intersection with the/th set at a distance Iki. In view of 
the statistical independence between different sets, we 
have 

i)k(lkl, ll,2 . . . .  ) = 1-I/3kj(Itv). (A4) 
J 

The probability/~,(T) of having a chord length T 
starting from an intersection with the kth set is given by 

{ ; ) Pk(T) = Y b~/(T) I]  Pkt(.v) dy , (A5) 
j i~j 

since a segment lkj may be a chord if and only if it is 
shorter than all the other segments starting from the 
same intersection. Integrating by parts and making use 
of (A 2), we may reduce the above integrals to (k 4= i) 

OO oO 

f Pu(Y) dy = L~'  f (y - T)Pu(Y) dy, (A6) 
T T 

so that (A 5) may be formally expressed in terms of the 
basic probabilities/3,(y) and their simple integrals. The 
overall probability p ( T )  of having a chord length T, no 
matter what the plane set producing the first inter- 
section point, is 

p ( T )  = Z P , P , ( T ) ,  (A7) 
, 

where P ,  is the relative probability of having an 
intersection with the kth plane set [see (7)], and 
remembering (A5), from (A 7)we finally obtain (11). 
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